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Abstract
Magnetophonon resonance in quantum wells in a tilted magnetic field B is
investigated. Measurements of the Hall coefficient and correspondingly of
the carrier concentration as a functions of magnetic field and temperature
are simultaneously performed. It is shown that the experimental data can be
interpreted in terms of a great sensitivity to the effects of varying the two
dimensional carrier concentration ns in a certain concentration interval. In
other words, the observed angular dependence of the MPR amplitudes is a
manifestation of dependence of ns on the magnitude of the magnetic field B . We
believe that such a dependence can be relevant in general for the interpretation
of magnetotransport in nondegenerate 2D electron gas.

1. Introduction

Magnetophonon resonance (MPR) in semiconductors is reached every time the limiting
frequency of a longitudinal optic phonon ω0 equals the cyclotron frequency of an electron, �,
times some small integer, N (see [1, 2]). Along with cyclotron resonance, it has become one
of the main instruments of semiconducting compound spectroscopy.

The advances in semiconductor nanofabrication in recent years have made available
nanostructures of great crystalline perfection and purity. The electrical conduction and some
other transport phenomena in such specimens has been the focus of numerous investigations,
both theoretical and experimental. In particular, the discovery of MPR in the quantum
wells took place in the pioneering paper by Tsui et al [3]. The most detailed experimental
investigation of MPR in quantum wells has been done by Nicholas and co-workers (see [4]
and the references therein). It has been shown that there is a qualitative difference between
MPR in 2D and 3D structures.
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Figure 1. MPR maximum position as a function of the angle of tilting. The line corresponds to
the dependence B2(0)/ cos θ (ns = 3.2 × 1011 cm−2).

In the 2D case MPR can exist only in a relatively narrow interval of electron concentrations
ns. This has been indicated in [4] and the physics of this phenomenon has been described in [5].
In a special group of experiments [3, 4] an angular dependence of MPR has been investigated.
As is well known, the 2D magnetoconductance, including the MPR [6], at high magnetic
fields B should depend on the combination B cos θ (see, for example, [7]). Here θ is the
angle between the magnetic field B and the perpendicular to the plane of the well. One can
easily understand this using the following classical analogy. In the 2D case the curvature of an
electron’s trajectory (in the course of electron’s periodic motion in the plane) can be considered
as nonexistent in the direction perpendicular to the plane because of the electron’s interaction
with the walls of the well. It means that all the physical quantities can depend only on the
perpendicular component of the field. In particular, the position of the N th MPR is given by

BN (θ) cos θ = BN (0) (1)

where BN (θ) is the position of the MPR maximum for B directed at the angle θ to the
perpendicular to the plane of the well while

BN (0) = mω0c/eN .

Here ω0 is the limiting frequency of the optic phonons (we will not discriminate between
the longitudinal frequency ωl and the transverse one ωt , because of the insufficient accuracy
of our experiment) and m is the effective mass. Experimentally the angular dependence has
been investigated by Tsui et al [3] and Brummel et al [8]. They have observed the angular
dependence of the amplitude of the MPR maximum that appeared to be very sharp, whereas
according to equation (1) the amplitude of the MPR maximum should be independent of θ .
This gives a drastic disagreement between the experiment and theory, and means that there is
some feature in the system considered depending on the total magnetic field B rather than on
the combination B cos θ . The position of the MPR maximum in the angular interval θ < 30◦
(see figure 1) is well described by equation (1). It means that in this interval one observes a
two-dimensional situation with an angular dependence of an MPR maximum. At larger angles
the shape of angular dependence of the MPR positions in the present experiment is changed.
We will not discuss in the present paper angles bigger than 25◦.
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One of the main characteristics of the sample is the carrier concentration ns. It is usually
implied that it depends neither on the temperature nor on the magnetic field. As a rule, this is
true at low temperatures where most experiments with nanostructures are performed. However,
the MPR experiments are made at relatively high temperatures, the highest amplitudes in GaAs
being observed at T about 180 K (they depend on N but only slightly). It is natural therefore
to check the temperature and magnetic field dependence of the concentration. In order to
control the electron concentration ns, we have performed observations of MPR along with
measurements of the Hall effect in 2D structures. Thus the purpose of the present paper
is the investigation of the MPR, simultaneous measurement of the magnetic field and the
temperature dependence of ns and interpretation of the obtained data on MPR based on the
data on ns. We will see that the MPR oscillation is very sensitive to the electron concentration
variation. We would like to emphasize that other magnetotransport phenomena at sufficiently
high temperatures may also be sensitive to the variation of ns.

2. Experimental details

Three series of GaAs/Alx Ga1−x As quantum well samples grown by molecular beam epitaxy
were cut into the shape of a typical Hall bar for observation of the Shubnikov–de Haas (SdH)
and the MPR oscillations. To avoid overheating of the sample during the magnetic field
pulse, we chose the measuring current to be sufficiently small (of the order of 5 µA). The
measurements were carried out over the temperature interval of 4.2–300 K in pulsed magnetic
fields up to B = 40 T with the pulse duration of 8 ms. The main tool for collecting the data in
our pulsed field installation is the data acquisition card with four fast independent 1 µs, 12 bit
digital channels having 128 kb buffer memory each.

The measured signal has a smooth nonlinear component with the amplitude much bigger
than the amplitude of the investigated MPR oscillation. To single out the oscillation and to get
rid of the high frequency noise we have used a software package based on the approximation
of the curve by the polynomial minimum squares method with the Gaussian weight function.
The method permits one to process the signals properly, particularly at the edges of the interval
of magnetic field variation. However, it brings about some distortion of the form of oscillation,
especially for the peaks near the edges (namely, the oscillation shifts towards smaller fields
while its amplitude goes down). Nevertheless, if an edge of the interval is within the same
phase of the MPR, the distortion of the last peak should be also the same for all the curves
and the results can be compared. One of the plots obtained as a result of such a treatment is
shown in figure 2. As under rotation of the specimen the maxima shift towards bigger fields
(see equation (1)), the maximal pulse field Bmax should also have the angular dependence
Bmax/ cos θ . All the remaining parameters used for the processing stay the same for all the
pulses. The dots obtained in such a manner are indicated in figures 1–8. To draw the lines
through these dots we have used the program based on the method of weighted minimal squares.

Well developed SdH oscillations periodic in 1/B were observed at T = 4.2 K and used
to determine the values of the low-temperature carrier concentrations of the samples, namely
ns = 2.2, 3.2 and 4.0 ×1011 cm−2. As pronounced MPR oscillations require sufficient optical
phonon population they are usually observable at elevated temperatures. For this reason, we
applied the Hall geometry to investigate the dependence of the carrier concentration on the
applied field at fixed temperatures between 80 and 300 K. Correspondingly, the temperature
dependence of ns was determined between 80 and 300 K for B between 0.95 and 27 T (see
figures 3 and 4).

The MPR oscillations, also periodic in 1/B , were recorded at different temperatures in
the range T = 170–230 K. In these measurements the magnetic field was tilted at an angle θ .
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Figure 2. The positions of the MPR maxima for T = 170 K and ns = 4.0 × 1011 cm−2.

Figure 3. Variation of 2D electron concentration ns for various temperatures (in kelvin) calculated
from experimental Hall data when the magnetic field B is continuously swept within the indicated
interval. The data are for the sample with the low temperature concentration ns = 3.2×1011 cm−2.
The temperatures from the bottom to the top are 20, 140, 170, 200, 240, 270 and 300 K.

From the data the amplitude and the field positions of the MPR oscillation peaks with N = 2,
3 and 4 were analysed (for N = 2 and 3 they are given in figures 5–8). Depending on the
sample and the temperature, the accuracy of the results varied between 2% and 5%.

The magnetic field interval 6–15 T is important for our purpose. However, we have
also observed the Hall resistivity ρxy outside this interval, namely down to the field 0.8 T.
We have done this in order to make estimates of τ at the temperatures we are interested in.
Such estimates are possible because provided the time of relaxation τ is energy dependent,
in general, the magnetic field dependence of ρxy is described not by one but by two straight
lines, and by writing about bend we mean the transition from one straight line to another in
the region of low magnetic fields where �τ is of the order of 1. The origin of this bend is
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Figure 4. Variation of 2D electron concentration ns as a function of temperature T . The data are
for the sample with the low temperature concentration ns = 3.2 × 1011 cm−2.

⋅

Θ

Figure 5. Angular dependence of the height of the MPR maximum; N = 2, ns = 4.0×1011 cm−2,
T = 170 K.

well known (for instance [13]). We have not seen any bend in the linear dependence of ρxy on
B in the region of low magnetic fields, although it should be seen provided �τ = u B/c is of
the order of 1 (here u is the electron mobility) and τ is energy dependent. This means that to
reach the region �τ ≈ 1 one should make the magnetic field even lower. This gives an upper
bound for τ in the relevant temperature region.

This shows (see figure 3) that for B � 6 T the variation of concentration ns as a function
of magnetic field B is rather big and the deviation from the linear dependence of ρxy(B) in
the region of the strong magnetic fields u B/c � 1 we are interested in cannot be explained as
originating from the difference between the resistivity

ρxy = σyx

σ 2
yx + σ 2

xx



4946 V V Afonin et al

⋅

Θ

Figure 6. Angular dependence of the MPR maxima for ns = 3.2 × 1011 cm−2 (a more rough
algorithm of the oscillation separation).

⋅

Θ

Figure 7. Angular dependence of the height of the MPR maximum; N = 2, ns = 2.2×1011 cm−2,
T = 190 K.

and the reciprocal conductivity 1/σyx . Indeed, in this region of magnetic field

σ 2
xx ≈ σ 2

xy(�τ)−2,

so that the difference between ρxy and 1/σxy is proportional to the small parameter (�τ)−2.
If one assumes that �τ ≈ 1 for B = 0.5 T then the difference ρxy − 1/σxy in the region of
the second MPR maximum (11 T) would be not bigger than 0.25%. However, we observe a
nonlinear deviation of the order of several per cent.

In the relevant magnetic field interval 6–12 T, the rate of the electron concentration
variation is temperature dependent (see figure 3). It is about 1.5% T−1 at 170 K and 3% T−1 at
200 K. From the low temperatures up to 140 K there is no noticeable magnetic field dependence
of concentration. This behaviour fully correlates with the temperature dependence of the Hall
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Figure 8. Angular dependence of the height of the MPR maxima; N = 2 and 3, ns =
4.0 × 1011 cm−2, T = 230 K.

(This figure is in colour only in the electronic version)

coefficient (see figure 4). One can see a rather strong temperature dependence from 140 K.
Note that when either the temperature or magnetic field goes up, the concentration ns also
goes up.

3. Experimental results and their theoretical description

As one can expect, the relative rate of concentration variation with the temperature (see figure 4)
is bigger than with magnetic field. The latter, however, is by a factor of 5–6 bigger as compared
with the concentration variation associated with the spin magnetic moment of the free electrons.
The well-known corrections to the g-factor of electrons in quantum wells [9] can be disregarded
as they also depend only on the combination B cos θ .3 In general, all the effects originating
from the 2D electrons in a quantum well depend on B and θ only in the combination B cos θ ,
and therefore cannot explain the angular dependence of MPR.

This makes one think of the electrons that tunnel from centres outside the well into the
quantum well. Usually the electron levels in such centres go down with the magnetic field
B . Indeed, as B goes up the electron wavefunctions become closer to the nuclei and therefore
their binding becomes tighter, or, in other words, the absolute value of the electron binding
energy goes up. As a result, the level should go down as well as the electron concentration ns

in the well. In our experiment ns has an opposite behaviour.
Another peculiarity of the variation of ns that cannot be explained by a simple variation

of the donor levels as a function of B is saturation of the function ns(B) for relatively small
value of B (see figure 3). It begins for B ≈ 12 T. It is interesting to note that for these values
of B the Bohr radius aB = h̄2/me2 becomes of the order of magnetic length aL = √

h̄c/eB.
Our experiment shows that ns depends on B for aB > aL and this dependence rapidly

disappears in the opposite case. For instance, this may indicate the existence of a weakly bound
state that is destroyed by the magnetic field. Such a state would be charged and therefore it
could not exist within the well (otherwise the condition �τ � 1 would be violated because

3 Note that any magnetic field dependent corrections to the 2D electron Hamiltonian enter in the combination B cos θ .
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of strong electron scattering). Thus the electron concentration ns should depend on the total
magnetic field rather than its perpendicular component.

Actually, in the situation considered in the present paper it is difficult to indicate a definite
mechanism responsible for the temperature and the magnetic field dependence of the electron
concentration ns in the conduction band of the quantum wells at relatively high temperatures
(the Boltzmann statistics). The quantum wells under consideration are in fact multilayer
structures that may contain donors and acceptors of various types and in various positions
outside the well. They determine the electron concentration ns within the well. As they are in
the bulk of the sample outside the well ns can depend on the value of the magnetic field B but
not on its direction. The dependence ns(B) we have observed may be considered as rather
unusual; to determine its origin is an interesting physical problem that we hope to investigate
more carefully in the future. We would like to emphasize once again that this problem is of
substantial interest and warrants further investigation.

Our purpose is to prove that the dependence ns(B) we have observed is sufficient to
interpret the angular dependence of the MPR maxima investigated in detail by Nicholas
et al (see the review paper [4] and the references therein). Note that in the same paper [4]
a very strong dependence of the MPR amplitude is demonstrated in the region of high
electron concentrations. The MPR amplitude starts to go down at ns ≈ 1011 cm−2. At
ns = 3 × 1011 cm−2 the decrease becomes extremely strong. The amplitude decreases by a
factor of 12 under the increase of concentration from ns = 3 × 1011 to 5.5 × 1011 cm−2. Thus
the dependence of the MPR maxima on ns should take place irrespective of the mechanism of
variation of ns itself.

Such a dependence of the MPR amplitude on concentration is surprising. Usually the role
of coulomb e–e interaction is determined by the so-called gas parameter η given by

η = e2n1/2/εkBT . (2)

This is the ratio of the energy of Coulomb e–e interaction to the kinetic energy of electrons. η

is of the order of 1/4 for ns = 1011 cm−2 and T = 200 K, i.e. it seems that one can neglect
the e–e interaction.

Another parameter important for our problem is the degeneracy parameter, i.e. the ratio

|µ|/kBT (3)

of the modulus of chemical potential µ to kBT . It becomes of the order of or smaller than 1 at
ns ≈ 3 × 1011 cm−2—see [4]. Physically, this means that under these conditions the electron
system is near the borderline between the Boltzmann and the Fermi statistics. However, the
onset of degeneracy normally changes the effect by something like a factor of 2 or so, whereas
a much more substantial variation of the MPR amplitude with the electron concentration has
actually been observed.

The physics of such a behaviour has been described in [5]. Qualitatively it can be
interpreted in the following way. Usually one interprets MPR as a result of electron transitions
between two Landau levels. However another, a less direct approach is also possible. One can
treat MPR as an enhancement of the interaction of a pair of electrons due to the exchange of an
optic phonon (a pole of the scattering amplitude). One should, however, take into consideration
that, apart from the interaction due to exchange of a phonon, the electrons have also a direct
Coulomb interaction. The sum of these two interactions can be described by a potential [10]
for which the Fourier component is given by

V = 2πe2

qε(ω)
(4)
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where q is the absolute value of the Fourier variable while

ε(ω) = ε∞
ω2

l − (ω + i
)2

ω2
t − (ω + i
)2

. (5)

Here ε∞ is the lattice dielectric susceptibility for ω → ∞ while 
 is the phonon damping due
to the phonon anharmonicity.

Equation (5) describes the direct interaction between two electrons. One should,
however, also allow for the indirect interaction where the first electron interacts with the
next (intermediate) one and this, in turn, interacts with another electron, etc (see the detailed
derivation in [5, 6]). Taking this in consideration, one should take into account the following
two points. First, one can consider any electron as the intermediate one. In other words, one
should sum over all the conduction electrons. This will give the factor ns.

Second, the interaction we are discussing is of a resonant nature. In the 2D case, the
electron spectrum, unlike the 3D case, has no component of the quasimomentum along the
magnetic field. As a result, the characteristic time of the e–e interaction is not m/h̄q2

z as in
the 3D case but is determined by 1/
e where 
e is the electron damping. This means that the
electrons will be in resonance during the time of the of order of 1/
e. As a result, we get for
the indirect interaction equation (4) with an extra factor [6]

2πe2

qε(ω)

ns

h̄(ω − N� cos θ + i
e)
.

The whole expression is dimensionless.
Now we should take into account that this interaction may take place 1, 2, 3, . . . times.

As a result, the full interaction is

Vfull = 2πe2

qε(ω)

[
1 − ns

h̄(ω − N� cos θ + i
e)

2πe2

qε(ω)

]−1

. (6)

The interaction becomes very strong provided the expression in the square brackets vanishes.
In fact this condition means the existence of electron transitions between Landau levels due
to the interaction with the mixed electron–phonon mode.

We will solve the equation

1 − ns

h̄(ω − N� cos θ + i
e)

2πe2

qε(ω)
= 0 (7)

by iterations considering the damping as relatively small. In the lowest approximation we have
two solutions we are interested in, namely

ω = N� cos θ, and ω = ωt.

This means that

ωt = N� cos θ. (8)

This condition determines the MPR peak positions. The next, imaginary, approximation
determines the width of the N th MPR peak


N = 
e +
ns

nup
� cos θ, (9)

where

nup = ε∞h̄� cos θ(ωl − ωt)q

2πe2

. (10)
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Figure 9. The typical diagram for the electron–phonon vertex, which is essential in the range
ns/nup � 1. It does not allow to write an exact electron–phonon equation in closed form.


N should be smaller than the spacing between the Landau levels. For large concentrations
ns, in equation (9) the last term is predominant. This gives the condition

ns/nup � 1. (11)

Here we have assumed that

(ωl − ωt)/ωl � 1

and we will neglect the terms proportional to this small parameter as compared to 1. For the
estimates we will take q = qT ≡ h̄−1√2mkBT .

When the parameter ns/nup is of the order of 1, the MPR peaks begin to overlap and at
ns/nup > 1 the MPR amplitude should rapidly go down as the spacing between the Landau
levels becomes of the order of their width. As a more rigorous theory [5], our qualitative
considerations given above permit one only to understand the origin of the sharp dependence
of the MPR amplitude on ns. One can give the following order-of-magnitude estimate
nup ∼ 1011 cm−2 as well. Here one has a many-electron problem with a strong electron–
phonon interaction. In this region neither an analytical solution nor numerical simulation is
possible. The point is that when one considers Feynman diagrams of higher order they acquire
additional denominators of the form

1

ω − N� cos θ + iδ
that do not depend of the electron’s quantum numbers. This means that every iteration of a
higher order enhances the singularity of the resulting expression. The principal problem that
the theory encounters is that it is impossible to write the electron–phonon vertex in a closed
form for ns � nup. One example of such diagrams is given in figure 9. Note that the phonon
Green functions entering such diagrams contain the exact vertices themselves.

However, one can be sure that if one follows the MPR maximum where ns does not depend
of the magnetic field B , the parameter ns/nup does not change (see equation (8)) and,as a result,
the height of the MPR maximum remains constant. This is a direct consequence of the fact
that the initial equation describing the problem depends only on the perpendicular component
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of B. In the region ns/nup > 1, even a small variation of ns due to the variation of B may result
in a strong variation of the height of the MPR maximum. In case the height of the MPR peak
depends only on the parameter ns/nup the height would remain the same irrespective of the
way one changes the concentration ns. The concentration can be changed either by magnetic
field variation or by using for the measurements the samples with different concentrations
determined by doping. The result has to be the same. Our samples with concentrations
ns = 2.2, 3.2 and 4.0 × 1011 cm−2 undoubtedly belong to this region. Accordingly for
ns = 2 × 1011 cm−2 the MPR amplitude is five times smaller than the maximal one and is
about 1% of the background, while for ns = 4 × 1011 cm−2 the amplitude is about 0.1%. This
is approximately equal to the observed ratio signal/background in our experiment.

As shown in figure 6 of [4], the region of 2D electron concentrations ns where MPR is
observable is rather narrow, while the ns dependence of the MPR amplitude is very sharp.
We wish to check whether a relatively small electron concentration variation due to a small
variation �B of the magnitude of the resonant magnetic field

�BN (θ) = BN (0)

(
1

cos θ
− 1

)
(12)

is sufficient to explain the decrease of the height of the MPR maximum due to the tilting of
the field B by the angle θ . For this purpose we will consider the data of figure 6 of [4] in the
interval of electron concentrations relevant for our experimental situation (ns � 2×1011 cm−2).
Naturally, one can expect here only an order-of-magnitudeaccuracy. One can see that, roughly,
the MPR amplitude decreases by 25% under enhancement of the electron concentration ns by
1%. Or, in other words, the MPR amplitude doubles under decrease of ns by 2%. Strictly
speaking, our estimates show that variation of ns by several per cent results in a relative variation
of the MPR amplitude of the order of unity. This fact, however, permits us to understand why
the variation of the MPR amplitude takes place at all. This fact is in contradiction to a 2D
theory for any region of ns.

In figure 5 the amplitude of the second maximum at 170 K has decreased by a factor 2 at
the angle θ1/2 = 25◦. The variation of the magnetic field is �B = 1.13 T. In the perpendicular
B, the maximum is at 11.25 T. The variation of electron concentration at this temperature is
1.5% for 1 T (figure 3). Thus the increase of the concentration is 1.7% at the angle of tilting
25◦. The agreement may be considered as reasonable.

These estimates are valid for the specimens with various concentration. To check whether
the angle θ1/2 remains the same for different ways of separating the oscillating part out of the
background, we have used a more rough algorithm than above (see section 2), choosing one
of the edges of the interval of the magnetic field variation towards the peak. This has widened
the sides of the peak as it should do. To visualize the whole procedure we give in figure 5
only the experimental dots (not approximating them by a smooth curve). It gives practically
the same value of θ1/2.

The rate of concentration variation as a function of magnetic field goes up with the
temperature (see figure 3). If the decrease of the MPR amplitude is determined by growth
of the concentration this should enhance the sharpness of the angular dependence of the MPR
amplitude with the temperature. In fact this behaviour has been observed in our experiment (see
figures 5, 7 and 8). Indeed, in figure 7 at T = 190 K for N = 2, θ1/2 = 17◦. This corresponds
to a smaller variation of the field, �B = 0.6 T. As, however, the rate of concentration variation
with B goes up with higher temperatures (it is of the order of 3% T−1—see figure 3) one has in
fact the same variation of the concentration �ns/ns = 1.8%. With our accuracy this coincides
with the drop of the MPR amplitude under the variation of the carrier concentration in the
perpendicular magnetic field B—see [4]. One has a decrease of the maximum by a factor of
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two for an enhancement of the concentration ns by 2%.
It may be useful to note that our reasoning can be reformulated:

(1) Consider the experimental data in the perpendicular magnetic field, i.e.:

(a) The data of [4] on the ns dependence of the MPR amplitude in the perpendicular
magnetic field.

(b) The ns variation as a function of the perpendicular magnetic field determined by the
Hall effect.

(2) Then one can calculate the critical angle θ1/2 for the tilted field and compare it with the
experimental data.

We can offer the following direct experimental proof that the considered effect depends
on the variation of the electron concentration ns in the magnetic field. In the same sample, for
the same variation of the MPR amplitude, it is necessary that the variation of the concentration
ns under rotation of the sample should be the same for different values of magnetic field. In
other words,

�ns = �BN (θ)
∂ns

∂ B
should be N -independent. According to figure 3, in the interval of the field variation 4–12 T
the concentration is within our accuracy a linear function of the field B . In other words, for
N = 2 and 3, �BN (θ

(N )

1/2 ) should be N -independent. Then, according to equation (12), we

have for example for N = 2 and 3

cos θ
(3)

1/2 = B3(0)

B3(0) + B2(0)(1/ cos θ
(2)
1/2 − 1)

. (13)

The sharper the peak, the more sensitive is equation (13) to the variation of the angles
θ1/2. As the peaks become more narrow with the temperature, we have chosen T = 230 K.
Then for N = 2 we have θ

(2)

1/2 = 12◦. As B2(0) = 11.25 T, B3(0) = 7.5 T we get θ
(3)

1/2 = 15◦,
which is in good agreement with the experimental value (see figure 8).

4. Conclusion

In summary, we have investigated magnetophonon resonance in a tilted magnetic field
measuring also the 2D electron concentration of the same samples. Analysing the experimental
data we have arrived at the following conclusions. The sharp angular dependence of the MPR
maxima on θ is a manifestation of a very sharp concentration dependence of the MPR amplitude
in the perpendicular magnetic field. The reason as to why the 2D concentration of the carriers
can be enhanced is, as we understand, the following. Due to the tilting of the magnetic field
the MPR maximum is shifted towards the strong magnetic fields (see equation (1) and figure 1
which agrees with the data of [4]). The shift is comparatively small (of the order of 1 T) and
at high temperatures brings about a comparatively small concentration variation (of the order
of several per cent). However, due to a very sharp concentration dependence of the MPR
amplitude, this is sufficient for a decrease of the amplitude by several times in the relevant
concentration interval [11].

It would be very interesting to investigate in future the MPR in quantum wells of
various compositions. It is also desirable to make a systematic investigation of the MPR
in nanostructures of different forms, such as quantum wires (see, for instance [11]) as well as
to take into consideration the polaron effect [12].
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Thus the principal conclusion of the paper can be formulated as follows. The angular
dependence of the MPR amplitudes as well as the decrease of the resonance widths with the
temperature is a manifestation of dependence of ns on the total magnetic field B (observed
explicitly in the present paper). This statement permits us to relate three seemingly different
groups of experiments performed in different laboratories.

(1) A sharp decrease of the MPR amplitude in a perpendicular magnetic field as a function
of growing ns with a steep angular dependence of the MPR amplitude under the tilting of
the magnetic field.

(2) A narrowing of the angular dependence of the MPR peaks as a function of rising
temperature with the enhancement of the rate of variation of ns as a function of B . When
the temperature goes up the function ns(B) becomes more sharp.

(3) The characteristic width of the MPR for different N with the rate of variation of ns as a
function of B .

We wish to emphasize that the dependence ns(B, T ) has not been an adjustable function.
Rather it has been extracted from the Hall effect measured on the same samples. The variation
of the electron concentration in quantum wells as a function of magnetic field may be also
important for analysis of other transport phenomena in quantum wells.
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